科学の箱

科学・IT・登山の話題

機械学習

pythonでEDAを実施する – 記述統計

投稿日:2018年3月22日 更新日:

  1. データを取り込む
  2. data frameに変換する
  3. desdribe()メソッドで要約統計量を出力
  4. 各項目について残差分析(ここでは各データが平均値からどの程度離れているか、要するに分散の傾向を把握する、χ2の残差分析ではない)
  5. 各項目について例外値分析
  6. カテゴラルデータはグループごとに集計(件数が多い値、少ない値について見てみる)
  7. 時系列データは時間ごとの変化をプロット
  8. regression分析
  9. ヒストグラムやボックスプロットで比較

 

メタ情報

inarticle



メタ情報

inarticle



-機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

Pythonではじめる機械学習 – Chap05 – Model Evaluation and Improvement

Chapter 5. Model Evaluation and Improvement 学習モデルの評価 定量的なモデルの評価は教師付きモデルが主になる。 教師なしモデルは定性的なアプローチで評価する …

no image

K近傍法と決定木の比較

One of the most comprehensible non-parametric methods is k-nearest-neighbors: find the points which …

no image

条件付きでレコードを取得する

データフレームでは条件付きでレコードを取得できる。 以下のようなフォーマットのデータフレームを考える id name height vector1 <- c(1, 2, 3, 4, 5) vec …

no image

SVMでグリッドサーチ

IrisデータについてSVMで分類をしてみた。さて、今回はSVMモデルのパラメータをいじってみてより精度が高いモデルを作ってみる。 すべての学習モデルはハイパーパラメータと呼ばれる学習モデルに影響を与 …

no image

dataanalysis-002-week3

exploratory analysis グラフの目的 データのおおよそを理解する パターンを探す モデリングを探す デバッグ コミュニケーション boxplot 値のレンジを確認する 他の値とレンジ …

2018年3月
« 2月   4月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

side bar top



アーカイブ

カテゴリー