科学の箱

科学・IT・登山の話題

Python

スライスとインデックスを組み合わせてデータを抜き出す

投稿日:

行列からデータを取得する際には、インデックスを利用すことはわかった。このインデックスの種類としては整数、スライス、配列、ブーリアンがある。これらを組み合わせて柔軟に配列から要素を抜き出すことができる。

今回はYamada, Takahashi, Suzuki, Kawakamiに紐づくデータを用意する。各データは7項目から成り立つ。また一人には複数のデータが紐づいているとする。

まずは名前用の配列を用意する。

# ラベル用配列
name = np.array(["Yamada", "Takahashi", "Suzuki", "Kawakami","Yamada"])
print(name)
# ['Yamada' 'Takahashi' 'Suzuki' 'Kawakami' 'Yamada']

次にデータ用の配列を用意する。データ数は5であり、7項目ある。合計25個のデータを用意して、shapeで5×7にしてあげる。

data = np.random.random(35)
data = data.reshape(5,7)
print(data)
# [[0.34424184 0.62308632 0.77090286 0.11197278 0.56711419 0.82823042
  0.40272551]
 [0.97235281 0.15912985 0.52458126 0.39268775 0.58444596 0.28289483
  0.88226724]
 [0.4269921  0.70174719 0.35377691 0.74882525 0.35059669 0.10852082
  0.79938528]
 [0.78825568 0.23561709 0.85584193 0.50858051 0.93876539 0.55676888
  0.46110362]
 [0.30714079 0.72800077 0.74949162 0.06922578 0.89872415 0.69173606
  0.93505941]]

 

さていまYamadaの3~5番目のデータのみを抜き出すとする。

単純に考えると、まずYamadaのデータのみ抜き出す。そしてスライスをすればよい。

# Yamadaを抜き出すためのブーリアン型
b_name = name == "Yamada" 
print(b_name)
# [ True False False False  True]

print(data[b_name])
# array([[0.34424184, 0.62308632, 0.77090286, 0.11197278, 0.56711419,
        0.82823042, 0.40272551],
       [0.30714079, 0.72800077, 0.74949162, 0.06922578, 0.89872415,
        0.69173606, 0.93505941]])

data_x = data[b_name]
print(data_x[:,3:5])
# array([[0.11197278, 0.56711419],
       [0.06922578, 0.89872415]])

 

さてこの操作はブーリアン型とスライスを合わせることで、一つにまとめることができる。

print(data[b_name, 3:5])
# [[0.11197278 0.56711419]
 [0.06922578 0.89872415]]

 

さらにブーリアン配列もinlineにすると以下のようになる。

print(data[name=="Yamada", 3:5])
# [[0.11197278 0.56711419]
 [0.06922578 0.89872415]]

 

メタ情報

inarticle



メタ情報

inarticle



-Python
-

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

数字、計算、文字列を画面出力

Hello Worldができたので、いろいろな出力を試してみる。 出力はprint関数を使えばよい。 まずは数値から試してみる。数値は文字列と違い引用符で囲む必要はない。画面に直接表示するので変数は使 …

no image

タイタニックデータでEDA

タイタニックデータでEDAを実施する。 まずはライブラリの読み込み import pandas as pd import numpy as np import matplotlib.pyplot as …

no image

Anaconda Jupyterで自動補完を使う手順

まずはnbexensionsをインストール。これは拡張モジュールを管理する機能。 conda install -y -c conda-forge jupyter_contrib_nbextension …

no image

画面に描画する線のフォーマットを変える

matplotlib.pyplot.plot()関数では線の形式を簡単に変えることができる。 ここでは以下を説明する。 線種別、色、太さを指定 線のマーカーを指定 線種別、色、太さを指定 線種別、色、 …

no image

OpenCV

WindowsにOpenCVをインストールする場合に2つのやり方がある。 一つは様々な言語からOpenCVを利用できるようにする方法、2つ目の方法ではPythonからOpenCVを利用する方法である。 …

2019年9月
« 8月   10月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

side bar top



アーカイブ

カテゴリー