科学の箱

科学・IT・登山の話題

機械学習

Core Concept in Data Analysis – Week 3

投稿日:

2d Analsysis

  • 分布図
  • 相関
  • 回帰分析
  • 因果関係

ガルトンはダーウィンのいとこ

メタ情報

inarticle



メタ情報

inarticle



-機械学習
-

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

Core Concept in Data Analysis – Week 2

1D analysis summary ヒストグラム ヒストグラムのタイプ:gaussian/power law 中心極限定理 確率分布 ブートストラップによる検証 gaussian 測定誤差もしくは …

no image

会社を変える分析の力

ユーザに関する問題 不確実性 過剰期待 事前期待 分析モデルの利用 パターン 変数の数 分析の利用 予測 判別 グループ 検知 最適化 発見 探索 データ分析の必要性 なぜ誤差がでるのか Costは …

no image

スパムメールの判別に使うベイズ定理についてまとめる

分類問題 スパムメールを判別するような問題は一般的に「分類問題」として機械学習では取り扱う。分類問題とはいまある「物」や「発生した事柄」を確率的に分類する。この「確率的」という言葉がみそであり、固定さ …

no image

conjoint分析の資料

マニュアル conjointパッケージ caFactorialDesign Rでconjointパッケージを利用した例 Rでコンジョイント分析 Rでコンジョイント分析 |極めて個人的なメモ コンジョイ …

no image

仕事で始める機械学習 – 3.学習結果を評価しよう – 指標

主な指標 モデル構築後に確認する主な指標は4つある。 正解率 適合率 再現率 F値 正解率 $$ 正解率 = \frac{TP + TN}{TP+FP+TN+FN} $$ 正解率は全データ数に対する正 …

2014年6月
« 5月   7月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

side bar top



アーカイブ

カテゴリー