科学の箱

科学・IT・登山の話題

機械学習

回帰と分類の違い

投稿日:2018年5月10日 更新日:

回帰と分類は両方とも”予測”問題である。予測とは従属変数から目的変数を明らかにする。この目的変数の種類により回帰と分類に分けられる。

回帰では連続した数値を予測する。例えば株価、売り上げ、気温などが例である。

それに対して分類はある値へと分類する。例えば二項対立であるyes/no、曜日である。分類は不連続データである。

メタ情報

inarticle



メタ情報

inarticle



-機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

データ分析の基本と業務

開発生産性は調和平均で計算する。 安全性の在庫の計算には正規分布を利用できる。 標準偏差=5であることを利用すると何が言えるか。 Z=1.96で95%をカバーする。 よって 5 x 1.96でほぼ10 …

no image

R Dataset – AirPassengers

データの説明 1949~1960年における月別飛行機搭乗者数 フォーマット このデータは時系列データであることがわかる。 > str(AirPassengers)  Time-Series [1 …

no image

dataanalysis-002-week4

クラスタリング SVDと組み合わせることでよりクラスに分かれているクラスタリングを実行できる。 散布図でクラスタリングする変数を探す クラスタリング SVDを実行する SVDの結果をクラスタリングに取 …

no image

SIGNATE お弁当の需要予測-2

データの内容を確認する。 期間を調べる d_train[‘datetime’].min() ‘ ‘2013-11-18’ d_train[‘datetime’].max() ‘ ‘2014-9-9’ …

no image

Core Concept in Data Analysis – Week 1

パート Data Mining Core Analysis Visualization Illustrate Data Mining data mining = patterns in data + …

2018年5月
« 4月   6月 »
 123456
78910111213
14151617181920
21222324252627
28293031  

side bar top



アーカイブ

カテゴリー