科学の箱

科学・IT・登山の話題

機械学習

pythonでEDAを実施する – 記述統計

投稿日:2018年3月22日 更新日:

  1. データを取り込む
  2. data frameに変換する
  3. desdribe()メソッドで要約統計量を出力
  4. 各項目について残差分析(ここでは各データが平均値からどの程度離れているか、要するに分散の傾向を把握する、χ2の残差分析ではない)
  5. 各項目について例外値分析
  6. カテゴラルデータはグループごとに集計(件数が多い値、少ない値について見てみる)
  7. 時系列データは時間ごとの変化をプロット
  8. regression分析
  9. ヒストグラムやボックスプロットで比較

 

メタ情報

inarticle



メタ情報

inarticle



-機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

irisデータを読み込んでseabornでいろいろ表示をしてみる。

data可視化ライブラリのseabornではすぐに機械学習を始められるように質が良いデータが用意されている。その中でも最も有名であるirisについてpairplotを使って可視化してみる。 ここでは以 …

no image

dataanalysis-002-week6

prediction study motivation 手順 データの選択 エラーの測定 デザイン データの分割 トレーニング テスト 検証 true false positives true pos …

no image

R Dataset – bone

データの説明 261人の子供たちから得られた年齢別骨密度。 フォーマット idnum: 識別コード age: 測定時の年齢 gender: 性別 spnbmd: 骨密度 チェック テーブル全体について …

no image

dataanalysis-002-week4

クラスタリング SVDと組み合わせることでよりクラスに分かれているクラスタリングを実行できる。 散布図でクラスタリングする変数を探す クラスタリング SVDを実行する SVDの結果をクラスタリングに取 …

no image

AWStatで基本指標を読む

ウェッブサイトの分析でまず見るべきことは月ごとのトレンドである。確認すべき指標はPV, 訪問数、UUdとなる。 AWStatではこれらの項目はWhen -> Month Historyで棒グラフ …

2018年3月
« 2月   4月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

side bar top



アーカイブ

カテゴリー