科学の箱

科学・IT・登山の話題

機械学習

K近傍法と決定木の比較

投稿日:2018年4月29日 更新日:

One of the most comprehensible non-parametric methods is k-nearest-neighbors: find the points which are most similar to you, and do what, on average, they do. There are two big drawbacks to it: first, you’re defining “similar” entirely in terms of the inputs, not the response; second, k is constant everywhere, when some points just might have more very-similar neighbors than others. Trees get around both problems: leaves correspond to regions of the input space (a neighborhood), but one where the responses are similar, as well as the inputs being nearby; and their size can vary arbitrarily. Prediction trees are adaptive nearest-neighbor methods.

http://www.stat.cmu.edu/~cshalizi/350/lectures/22/lecture-22.pdf

メタ情報

inarticle



メタ情報

inarticle



-機械学習

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

kaggle Titanic Tutorial – 3

DecitionTreeのパラメータを調整する。 まずはMaxDepthから from sklearn.model_selection import LeaveOneOut from sklearn. …

no image

売り上げデータの分析

利益 = 売り上げ – コスト 売り上げ = 客数 x 客単価 コスト ≒ 人件費 + 廃棄コスト 客数 客単価 = Σ 品物i x 購入数 客数を増やす方法 来てもらう方法 安売りキャン …

no image

make_blobsで分類データを作成する

sklearnで分類学習モデルを構築する際にテストデータが必要になる。手で作成したりあらかじめ用意されたデータを使うこともできるが、make_blobsを使ってランダムデータを作成できる。 sklea …

no image

dataanalysis-002-week6

prediction study motivation 手順 データの選択 エラーの測定 デザイン データの分割 トレーニング テスト 検証 true false positives true pos …

no image

Pythonではじめる機械学習 – GMM

k-Meansの課題 クラスタ間で微妙な位置関係にあるデータについて特定クラスタに分類された際の不確実の度合いを知ることができない。 例えば51%の確率でクラスタAであり、49%の確率でクラスタBかも …

2018年4月
« 3月   5月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

side bar top



最近の投稿

アーカイブ

カテゴリー